Caffeic acid phenethyl ester protects against tamoxifen-induced hepatotoxicity in rats

Ashwag A. Albukhari a, Hana M. Gashlan a, Hesham A. El-Beshbishy b, Ayman A. Nagy c, Ashraf B. Abdel-Naim d, * a

aBiochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
bMedical Laboratories Technology Department, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
cForensic and Clinical Toxicology, Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
dPharmacology and Toxicology Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia

ARTICLE INFO

Article history:
Received 21 January 2009
Accepted 16 April 2009
Available online x xxx

Keywords:
Tamoxifen
Caffeic acid phenethyl ester
Hepatotoxicity

ABSTRACT

Tamoxifen (TAM) is widely used in the treatment and prevention of breast cancer. Adverse effects of TAM include hepatotoxicity. Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been used in folk medicine for diverse ailments. In the current study, the protective effects of CAPE against TAM-induced hepatotoxicity in female rats were evaluated. TAM (45 mg/kg/day, i.p., for 10 consecutive days) resulted in an elevation of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP), depletion of liver reduced glutathione (GSH) and accumulation of oxidized glutathione (GSSG) and lipid peroxidation (LPO). Also, TAM treatment resulted in inhibition of hepatic activity of glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT). Further, it raised liver tumor necrosis factor-alpha (TNF-α) level and induced histopathological changes. Pretreatment with CAPE (2.84 mg/kg/day, i.p., for 20 consecutive days, starting 10 days before TAM injection) significantly prevented the elevation in serum activity of the assessed enzymes. CAPE significantly inhibited TAM-induced hepatic GSH depletion and GSSG and LPO accumulation. Consistently, CAPE normalized the activity of GR, GPx, SOD and CAT, inhibited the rise in TNF-α and ameliorated the histopathological changes. In conclusion, CAPE protects against TAM-induced hepatotoxicity.

© 2009 Published by Elsevier Ltd.

* Corresponding author. Tel.: +966 2 640000b22262; fax: +966 2 6951696.
E-mail addresses: abnaim@yahoo.com, aabdelnaim@kau.edu.sa (A.B. Abdel-Naim).

0278-6915/see front matter © 2009 Published by Elsevier Ltd.